Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

Isomorphous crystals of strychninium 4-chlorobenzoate and strychninium 4-nitrobenzoate

Agata Białońska* and Zbigniew Ciunik

Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
Correspondence e-mail: bialonsk@wcheto.chem.uni.wroc.pl

Received 22 June 2006
Accepted 27 June 2006
Online 11 August 2006
In strychninium 4-chlorobenzoate, $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClO}_{2}{ }^{-}$, (I), and strychninium 4-nitrobenzoate, $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$.$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}^{-}$, (II), the strychninium cations form pillars stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonds. Channels between the pillars are occupied by anions linked to one another by $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonds. The cations and anions are linked by ionic $\mathrm{N}-\mathrm{H}^{+} \cdots \mathrm{O}^{-}$and $\mathrm{C}-\mathrm{H} \cdots X$ hydrogen bonds, where $X=\mathrm{O}, \pi$ and Cl in (I), and O and π in (II).

Comment

Strychnine is one of the resolving agents used for the separation of racemic acids by fractional crystallization of strychninium diastereomeric salts (Jacques et al., 1991). During racemic resolution of N-4-nitrobenzoyl-DL-amino acids, strychninium diastereomeric salts have crystallized (Białonska \& Ciunik, 2006a). In the crystals of the strychninium salts, strychninium cations are assembled in corrugated layers. Holes at the surfaces of these layers have been recognized by the 4-nitrobenzoyl group of the amino acid derivative. Since the 4-nitrobenzoyl group plays a significant role in the racemic resolution of N-4-nitrobenzoyl-dl-amino acids, we decided to investigate the importance of the 4-nitrobenzoyl group for strychninium self-assembly. Thus, we have crystallized the strychninium salts of 4-nitro- and 4-chlorobenzoic acid, viz. (I) and (II).

Strychninium cations have seven stereogenic centers. Taking into account the numbering scheme employed in this
paper these are $\mathrm{N} 2(S), \mathrm{C} 7(S), \mathrm{C} 8(S), \mathrm{C} 11(S), \mathrm{C} 18(R), \mathrm{C} 19(R)$ and $\mathrm{C} 21(S)$. The geometry of the strychninium cation in the crystal structures of (I) and (II) (Fig. 1) is comparable to that found in related compounds (Gould et al., 1985, 1987; Mostad, 1985; Białońska \& Ciunik, 2005, 2004, 2006a,b; Bottcher \& Buchkremer-Hermanns, 1987; Ghosh et al., 1989; Sato \& Yano, 1989; Costante et al., 1996; Robertson \& Beevers, 1951; Bokhoven et al., 1951; Yano et al., 1994; Yuan et al., 1994).

In both (I) and (II), the cations form pillars (Fig. 2) extending in the [010] direction. The pillars are stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (amide) and $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) hydrogen bonds (see Tables 1 and 2). Similar pillars are present in the previously described crystals of $(-)$-strychninium (+)-neopentylphthalate chloroform solvate, (- -strychninium (+)-neopentyl-1deuterophthalate chloroform solvate (Yuan et al., 1994) and strychninium N-phthaloyl- β-alaninate N-phthaloyl β-alanine (Białońska \& Ciunik, 2006b).

(a)

(b)

Figure 1
The molecular configuration and atom-numbering scheme in the crystal structures of (a) (I) and (b) (II). Non-H atoms are shown as 30% probability displacement ellipsoids. Dashed lines indicate $\mathrm{N}-\mathrm{H}^{+} \ldots \mathrm{O}^{-}$ hydrogen bonds.

Channels are formed between four neighboring strychninium pillars (see Fig. 3). The channels are occupied by 4-chloro- or 4-nitrobenzoate anions in the crystals of (I) and

The packing of $(a)(\mathrm{I})$ and (b) (II). Strychninium cations [solid lines in (a)] form pillars. Channels between neighboring strychninium pillars are occupied by (a) 4-chlorobenzoate (open lines) and (b) 4-nitrobenzoate anions. For clarity, H atoms have been omitted. Dashed lines indicate hydrogen bonds.

Figure 3
The surface of strychninium self-assembly together with the channels occupied by 4 -chlorobenzoate anions. In (II), similar channels are occupied by 4-nitrobenzoate anions (Humphrey et al., 1996).
(II), respectively. The anions are linked to one another by $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ hydrogen bonds. The strychninium cations and the 4-chloro- or 4-nitrobenzoate anions are linked by ionic N $\mathrm{H}^{+} \ldots \mathrm{O}^{-}$hydrogen bonds (Tables 1 and 2), in which the protonated amine atom N 2 of the strychninium cation and atom O5 of the deprotonated carboxyl group of the 4-chloroor 4-nitrobenzoate anion act as a donor and an acceptor, respectively. Moreover, the cations and the anions are linked by weak hydrogen bonds. In the crystal of (I), the 4-chlorobenzoate anions are acceptors of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonds (see Tables 1 and 2). In the crystal of (II), the 4-nitrobenzoate anions are acceptors of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonds (Tables 1 and 2).

Experimental

Crystals of (I) and (II) were grown from methanol solutions containing equimolar amounts of strychnine and 4-chloro- or 4-nitrobenzoic acid, respectively. The crystallizations were performed at room temperature by slow evaporation of the solvent.

Salt (I)

Crystal data
$\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClO}_{2}{ }^{-}$
$Z=2$
$M_{r}=490.97$
Monoclinic, $P 2_{1}$
$a=10.557$ (4) A
$b=7.682(2) \AA$
$c=14.376$ (8) \AA
$\beta=98.47$ (4) ${ }^{\circ}$
$V=1153.2(8) \AA^{3}$

Data collection

Kuma KM-4 CCD diffractometer ω scan
15981 measured reflections
6470 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.084$
$S=1.01$
6470 reflections
316 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.038 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$) for (I).
$C g 1$ and $C g 2$ represent the centroids of the C1-C6 and C23-C28 rings.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$	Offset
$\mathrm{N} 2-\mathrm{H} 22 \cdots \mathrm{O} 3$	0.93	1.66	$2.589(2)$	174	-
$\mathrm{C} 17-\mathrm{H} 17 B \cdots \mathrm{O} 2^{\mathrm{i}}$	0.99	2.35	$3.311(2)$	164	-
$\mathrm{C} 18-\mathrm{H} 18 \cdots \mathrm{O} 2^{\mathrm{ii}}$	1.00	2.46	$3.374(2)$	152	-
$\mathrm{C} 17-\mathrm{H} 17 A \cdots \mathrm{O} 4$	0.99	2.52	$3.235(3)$	129	-
$\mathrm{C} 17-\mathrm{H} 17 A \cdots \mathrm{Cl} \mathrm{l}^{\mathrm{iii}}$	0.99	2.84	$3.512(2)$	126	-
$\mathrm{C} 10-\mathrm{H} 10 B \cdots \mathrm{Cg} 1^{\mathrm{i}}$	0.99	3.00	$3.939(2)$	159	1.20
$\mathrm{C} 12-\mathrm{H} 12 A \cdots \mathrm{Cg} 2^{\mathrm{iv}}$	0.99	2.93	$3.705(2)$	136	0.86
$\mathrm{C} 28-\mathrm{H} 28 \cdots C g 2^{\text {iii }}$	0.95	2.85	$3.724(2)$	154	0.74

Symmetry codes: (i) $-x+2, y-\frac{1}{2},-z+1$; (ii) $-x+2, y+\frac{1}{2},-z+1$; (iii) $-x+3, y-\frac{1}{2}$, $-z$; (iv) $-x+2, y+\frac{1}{2},-z$.

Salt (II)

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}{ }^{-}$	$Z=2$
$M_{r}=501.53$	$D_{x}=1.433 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1}$	Mo $K \alpha$ radiation
$a=10.976(2) \AA$	$\mu=0.10 \mathrm{~mm}^{-1}$
$b=7.545(1) \AA$	$T=100(2) \mathrm{K}$
$c=14.187(2) \AA$	Needle, colorless
$\beta=98.29(3)^{\circ}$	$0.35 \times 0.15 \times 0.15 \mathrm{~mm}$
$V=1162.6(3) \AA^{3}$	

Data collection

Kuma KM-4 CCD diffractometer ω scan
7610 measured reflections
2666 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.079$
$S=1.06$
2666 reflections
334 parameters
H-atom parameters constrained

2541 reflections with $I>2 \sigma(I)$
$Z=2$
$D_{x}=1.433 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$=0.10 \mathrm{~mm}^{-1}$

Needle, colorless
$0.35 \times 0.15 \times 0.15 \mathrm{~mm}$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=27.0^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0517 P)^{2}\right. \\
& \quad+0.1263 P] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.19 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e}^{-3} \AA^{-3} \\
& \text { Absolute structure: Robertson \& } \\
& \text { Beevers }(1951)
\end{aligned}
$$

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$) for (II).
$C g 1$ and Cg 2 represent the centroids of the $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 23-\mathrm{C} 28$ rings, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$	Offset
$\mathrm{N} 2-\mathrm{H} 22 \cdots \mathrm{O} 3$	0.93	1.72	$2.637(2)$	171	-
$\mathrm{C} 17-\mathrm{H} 17 B \cdots \mathrm{O}^{\mathrm{i}}$	0.99	2.35	$3.270(2)$	154	-
$\mathrm{C} 18-\mathrm{H} 18 \cdots \mathrm{O} 2^{\mathrm{ii}}$	1.00	2.41	$3.312(2)$	150	-
$\mathrm{C} 17-\mathrm{H} 17 A \cdots \mathrm{O} 4$	0.99	2.47	$3.212(2)$	131	-
$\mathrm{C} 17-\mathrm{H} 17 A \cdots \mathrm{O} 5^{\text {iii }}$	0.99	2.52	$3.279(2)$	133	-
$\mathrm{C} 2-\mathrm{H} 2 \cdots 5^{\mathrm{iv}}$	0.95	2.50	$3.408(3)$	159	-
$\mathrm{C} 21-\mathrm{H} 21 \cdots \mathrm{O}^{\mathrm{v}}$	1.00	2.53	$3.220(2)$	126	-
$\mathrm{C} 10-\mathrm{H} 10 B \cdots \mathrm{Cg}^{\mathrm{i}}$	0.99	3.03	$3.963(2)$	158	1.41
$\mathrm{C} 12-\mathrm{H} 12 A \cdots \mathrm{Cg2} 2^{\text {vi }}$	0.99	2.92	$3.685(2)$	135	0.48
$\mathrm{C} 28-\mathrm{H} 28 \cdots C g 2^{\text {iii }}$	0.94	2.74	$3.600(2)$	152	0.33

Symmetry codes: (i) $-x+2, y-\frac{1}{2},-z+1$; (ii) $-x+2, y+\frac{1}{2},-z+1$; (iii) $-x+3$, $y-\frac{1}{2},-z$; (iv) $x, y, z+1$; (v) $-x+3, y+\frac{1}{2},-z$; (vi) $-x+2, y+\frac{1}{2},-z$.

All H atoms were included in idealizing positions and were treated as riding atoms, with $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ distances of $0.95-1.00$ and $0.93 \AA$, respectively. Friedel pairs were merged before the final refinement of (II). The absolute configurations of (I) and (II) were
chosen on the basis of the known absolute configurations of strychnine (Robertson \& Beevers, 1951) and for (I) was confirmed by the value of the Flack (1983) parameter.

For both salts, data collection: CrysAlis CCD (Oxford Diffraction, 2001); cell refinement: CrysAlis RED (Oxford Diffraction, 2001); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT (Bruker, 1999); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD3030). Services for accessing these data are described at the back of the journal.

References

Białońska, A. \& Ciunik, Z. (2004). CrystEngComm, 6, 276-279.
Białońska, A. \& Ciunik, Z. (2005). Acta Cryst. C61, o161-o164.
Białońska, A. \& Ciunik, Z. (2006a). Acta Cryst. B62. In the press.
Białońska, A. \& Ciunik, Z. (2006b). Acta Cryst. C62, o182-o185.
Bokhoven, C., Schoone, J. C. \& Bijvoet, J. M. (1951). Acta Cryst. 4, 275-280.
Bottcher, P. \& Buchkremer-Hermanns, H. (1987). Z. Naturforsch. Teil B, 42, 431-434.
Bruker (1999). SHELXTL-NT. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Costante, J., Ehlinger, N., Perrin, M. \& Collet, A. (1996). Enantiomer, 1, 377386.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Ghosh, R., Roychowdhury, P., Chattopadhyay, D. \& Iitaka, Y. (1989). Acta Cryst. C45, 1794-1797.
Gould, R. O., Kelly, R. \& Walkinshaw, M. D. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 847-852.
Gould, R. O., Taylor, P., Walkinshaw, M. D. \& Bruins Slot, H. J. (1987). Acta Cryst. C43, 2405-2410.
Humphrey, W., Dalke, A. \& Schelten, K. (1996). J. Mol. Graph. 14, 33-38.
Jacques, J., Collet, A. \& Wilen, S. H. (1991). Enantiomers, Racemates and Resolutions. Malabar, Florida: Krieger Publishing Company.
Mostad, A. (1985). Acta Chem. Scand. Ser. B, 39, 705-716.
Oxford Diffraction (2001). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.
Robertson, J. H. \& Beevers, C. A. (1951). Acta Cryst. 4, 270-275.
Sato, M. \& Yano, S. (1989). Bull. Chem. Soc. Jpn, 62, 3932-3938.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Yano, S., Kato, M., Tsukahara, K., Sato, M., Shibahara, T., Lee, K., Sugiara, Y., Iida, M., Goto, K., Aoki, S., Shibahara, Y., Nakahra, H., Yanagisawa, S. \& Miyagawa, H. (1994). Inorg. Chem. 33, 5030-5035.
Yuan, H. S. H., Stevens, R. C., Bau, R., Mosher, H. S. \& Koetzle, T. F. (1994). Proc. Natl Acad. Sci. USA, 91, 12872-12876.

